Publications scientifiques

Publications des collaborateurs de la BQC19

Nature Medecine

A Neanderthal OAS1 isoform protects individuals of European ancestry against COVID-19 susceptibility and severity, Sirui Zhou et coll., Nature Medicine

Sirui Zhou, Guillaume Butler-Laporte, Tomoko Nakanishi, David R. Morrison, Jonathan Afilalo, Marc Afilalo, Laetitia Laurent, Maik Pietzner, Nicola Kerrison, Kaiqiong Zhao, Elsa Brunet-Ratnasingham, Danielle Henry, Nofar Kimchi, Zaman Afrasiabi, Nardin Rezk, Meriem Bouab, Louis Petitjean, Charlotte Guzman, Xiaoqing Xue, Chris Tselios, Branka Vulesevic, Olumide Adeleye, Tala Abdullah, Noor Almamlouk, Yiheng Chen, Michaël Chassé, Madeleine Durand, Clare Paterson, Johan Normark, Robert Frithiof, Miklós Lipcsey, Michael Hultström, Celia M. T. Greenwood, Hugo Zeberg, Claudia Langenberg, Elin Thysell, Michael Pollak, Vincent Mooser, Vincenzo Forgetta, Daniel E. Kaufmann & J. Brent Richards


To identify circulating proteins influencing Coronavirus Disease 2019 (COVID-19) susceptibility and severity, we undertook a two-sample Mendelian randomization (MR) study, rapidly scanning hundreds of circulating proteins while reducing bias due to reverse causation and confounding. In up to 14,134 cases and 1.2 million controls, we found that an s.d. increase in OAS1 levels was associated with reduced COVID-19 death or ventilation (odds ratio (OR) = 0.54, P = 7 × 10-8), hospitalization (OR = 0.61, P = 8 × 10-8) and susceptibility (OR = 0.78, P = 8 × 10-6). Measuring OAS1 levels in 504 individuals, we found that higher plasma OAS1 levels in a non-infectious state were associated with reduced COVID-19 susceptibility and severity. Further analyses suggested that a Neanderthal isoform of OAS1 in individuals of European ancestry affords this protection. Thus, evidence from MR and a case–control study support a protective role for OAS1 in COVID-19 adverse outcomes. Available pharmacological agents that increase OAS1 levels could be prioritized for drug development.

Consulter la publication
The Journal of Clinical Investigation

Identification of SARS-CoV-2–specific immune alterations in acutely ill patients

Rose-Marie Rébillard, Marc Charabati, Camille Grasmuck, Abdelali Filali-Mouhim,2 Olivier Tastet, Nathalie Brassard, Audrey Daigneault, Lyne Bourbonnière, Sai Priya Anand, Renaud Balthazard, Guillaume Beaudoin-Bussières, Romain Gasser, Mehdi Benlarbi, Ana Carmena Moratalla, Yves Carpentier Solorio, Marianne Boutin, Negar Farzam-kia, Jade Descôteaux-Dinelle, Antoine Philippe Fournier, Elizabeth Gowing, Annemarie Laumaea, Hélène Jamann, Boaz Lahav, Guillaume Goyette, Florent Lemaître, Victoria Hannah Mamane, Jérémie Prévost, Jonathan Richard, Karine Thai, Jean-François Cailhier, Nicolas Chomont, Andrés Finzi, Michaël Chassé, Madeleine Durand, Nathalie Arbour, Daniel E. Kaufmann, Alexandre Prat, and Catherine Larochelle


Dysregulated immune profiles have been described in symptomatic patients infected with SARS-CoV-2. Whether the reported immune alterations are specific to SARS-CoV-2 infection or also triggered by other acute illnesses remains unclear. We performed flow cytometry analysis on fresh peripheral blood from a consecutive cohort of (a) patients hospitalized with acute SARS-CoV-2 infection, (b) patients of comparable age and sex hospitalized for another acute disease (SARS-CoV-2 negative), and (c) healthy controls. Using both data-driven and hypothesis-driven analyses, we found several dysregulations in immune cell subsets (e.g., decreased proportion of T cells) that were similarly associated with acute SARS-CoV-2 infection and non–COVID-19-related acute illnesses. In contrast, we identified specific differences in myeloid and lymphocyte subsets that were associated with SARS-CoV-2 status (e.g., elevated proportion of ICAM-1+ mature/activated neutrophils, ALCAM+ monocytes, and CD38+CD8+ T cells). A subset of SARS-CoV-2–specific immune alterations correlated with disease severity, disease outcome at 30 days, and mortality. Our data provide an understanding of the immune dysregulation specifically associated with SARS-CoV-2 infection among acute care hospitalized patients. Our study lays the foundation for the development of specific biomarkers to stratify SARS-CoV-2–positive patients at risk of unfavorable outcomes and to uncover candidate molecules to investigate from a therapeutic perspective.

Consulter la publication